code_app/third_party/opencv/kylin/amd64/include/opencv2/core/cuda/simd_functions.hpp

870 lines
30 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
* Copyright (c) 2013 NVIDIA Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of NVIDIA Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef OPENCV_CUDA_SIMD_FUNCTIONS_HPP
#define OPENCV_CUDA_SIMD_FUNCTIONS_HPP
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
// 2
static __device__ __forceinline__ unsigned int vadd2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vadd2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vadd.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vadd.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = a ^ b; // sum bits
r = a + b; // actual sum
s = s ^ r; // determine carry-ins for each bit position
s = s & 0x00010000; // carry-in to high word (= carry-out from low word)
r = r - s; // subtract out carry-out from low word
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsub2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vsub2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vsub.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vsub.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = a ^ b; // sum bits
r = a - b; // actual sum
s = s ^ r; // determine carry-ins for each bit position
s = s & 0x00010000; // borrow to high word
r = r + s; // compensate for borrow from low word
#endif
return r;
}
static __device__ __forceinline__ unsigned int vabsdiff2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vabsdiff2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vabsdiff.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vabsdiff.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t, u, v;
s = a & 0x0000ffff; // extract low halfword
r = b & 0x0000ffff; // extract low halfword
u = ::max(r, s); // maximum of low halfwords
v = ::min(r, s); // minimum of low halfwords
s = a & 0xffff0000; // extract high halfword
r = b & 0xffff0000; // extract high halfword
t = ::max(r, s); // maximum of high halfwords
s = ::min(r, s); // minimum of high halfwords
r = u | t; // maximum of both halfwords
s = v | s; // minimum of both halfwords
r = r - s; // |a - b| = max(a,b) - min(a,b);
#endif
return r;
}
static __device__ __forceinline__ unsigned int vavg2(unsigned int a, unsigned int b)
{
unsigned int r, s;
// HAKMEM #23: a + b = 2 * (a & b) + (a ^ b) ==>
// (a + b) / 2 = (a & b) + ((a ^ b) >> 1)
s = a ^ b;
r = a & b;
s = s & 0xfffefffe; // ensure shift doesn't cross halfword boundaries
s = s >> 1;
s = r + s;
return s;
}
static __device__ __forceinline__ unsigned int vavrg2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vavrg2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// HAKMEM #23: a + b = 2 * (a | b) - (a ^ b) ==>
// (a + b + 1) / 2 = (a | b) - ((a ^ b) >> 1)
unsigned int s;
s = a ^ b;
r = a | b;
s = s & 0xfffefffe; // ensure shift doesn't cross half-word boundaries
s = s >> 1;
r = r - s;
#endif
return r;
}
static __device__ __forceinline__ unsigned int vseteq2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.eq %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
unsigned int c;
r = a ^ b; // 0x0000 if a == b
c = r | 0x80008000; // set msbs, to catch carry out
r = r ^ c; // extract msbs, msb = 1 if r < 0x8000
c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
c = r & ~c; // msb = 1, if r was 0x0000
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpeq2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vseteq2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
r = a ^ b; // 0x0000 if a == b
c = r | 0x80008000; // set msbs, to catch carry out
r = r ^ c; // extract msbs, msb = 1 if r < 0x8000
c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
c = r & ~c; // msb = 1, if r was 0x0000
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetge2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.ge %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(b));
c = vavrg2(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpge2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetge2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
asm("not.b32 %0, %0;" : "+r"(b));
c = vavrg2(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetgt2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.gt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(b));
c = vavg2(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
c = c & 0x80008000; // msbs = carry-outs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpgt2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetgt2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
asm("not.b32 %0, %0;" : "+r"(b));
c = vavg2(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
c = c & 0x80008000; // msbs = carry-outs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetle2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.le %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(a));
c = vavrg2(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmple2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetle2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
asm("not.b32 %0, %0;" : "+r"(a));
c = vavrg2(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetlt2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset2.u32.u32.lt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(a));
c = vavg2(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmplt2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetlt2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
asm("not.b32 %0, %0;" : "+r"(a));
c = vavg2(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
c = c & 0x80008000; // msb = carry-outs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetne2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm ("vset2.u32.u32.ne %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
unsigned int c;
r = a ^ b; // 0x0000 if a == b
c = r | 0x80008000; // set msbs, to catch carry out
c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
c = r | c; // msb = 1, if r was not 0x0000
c = c & 0x80008000; // extract msbs
r = c >> 15; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpne2(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetne2(a, b);
c = r << 16; // convert bool
r = c - r; // into mask
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
r = a ^ b; // 0x0000 if a == b
c = r | 0x80008000; // set msbs, to catch carry out
c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000
c = r | c; // msb = 1, if r was not 0x0000
c = c & 0x80008000; // extract msbs
r = c >> 15; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vmax2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vmax2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vmax.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmax.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t, u;
r = a & 0x0000ffff; // extract low halfword
s = b & 0x0000ffff; // extract low halfword
t = ::max(r, s); // maximum of low halfwords
r = a & 0xffff0000; // extract high halfword
s = b & 0xffff0000; // extract high halfword
u = ::max(r, s); // maximum of high halfwords
r = t | u; // combine halfword maximums
#endif
return r;
}
static __device__ __forceinline__ unsigned int vmin2(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vmin2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vmin.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmin.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t, u;
r = a & 0x0000ffff; // extract low halfword
s = b & 0x0000ffff; // extract low halfword
t = ::min(r, s); // minimum of low halfwords
r = a & 0xffff0000; // extract high halfword
s = b & 0xffff0000; // extract high halfword
u = ::min(r, s); // minimum of high halfwords
r = t | u; // combine halfword minimums
#endif
return r;
}
// 4
static __device__ __forceinline__ unsigned int vadd4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vadd4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vadd.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vadd.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vadd.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vadd.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t;
s = a ^ b; // sum bits
r = a & 0x7f7f7f7f; // clear msbs
t = b & 0x7f7f7f7f; // clear msbs
s = s & 0x80808080; // msb sum bits
r = r + t; // add without msbs, record carry-out in msbs
r = r ^ s; // sum of msb sum and carry-in bits, w/o carry-out
#endif /* __CUDA_ARCH__ >= 300 */
return r;
}
static __device__ __forceinline__ unsigned int vsub4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vsub4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vsub.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vsub.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vsub.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vsub.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s, t;
s = a ^ ~b; // inverted sum bits
r = a | 0x80808080; // set msbs
t = b & 0x7f7f7f7f; // clear msbs
s = s & 0x80808080; // inverted msb sum bits
r = r - t; // subtract w/o msbs, record inverted borrows in msb
r = r ^ s; // combine inverted msb sum bits and borrows
#endif
return r;
}
static __device__ __forceinline__ unsigned int vavg4(unsigned int a, unsigned int b)
{
unsigned int r, s;
// HAKMEM #23: a + b = 2 * (a & b) + (a ^ b) ==>
// (a + b) / 2 = (a & b) + ((a ^ b) >> 1)
s = a ^ b;
r = a & b;
s = s & 0xfefefefe; // ensure following shift doesn't cross byte boundaries
s = s >> 1;
s = r + s;
return s;
}
static __device__ __forceinline__ unsigned int vavrg4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vavrg4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// HAKMEM #23: a + b = 2 * (a | b) - (a ^ b) ==>
// (a + b + 1) / 2 = (a | b) - ((a ^ b) >> 1)
unsigned int c;
c = a ^ b;
r = a | b;
c = c & 0xfefefefe; // ensure following shift doesn't cross byte boundaries
c = c >> 1;
r = r - c;
#endif
return r;
}
static __device__ __forceinline__ unsigned int vseteq4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.eq %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
unsigned int c;
r = a ^ b; // 0x00 if a == b
c = r | 0x80808080; // set msbs, to catch carry out
r = r ^ c; // extract msbs, msb = 1 if r < 0x80
c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
c = r & ~c; // msb = 1, if r was 0x00
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpeq4(unsigned int a, unsigned int b)
{
unsigned int r, t;
#if __CUDA_ARCH__ >= 300
r = vseteq4(a, b);
t = r << 8; // convert bool
r = t - r; // to mask
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
t = a ^ b; // 0x00 if a == b
r = t | 0x80808080; // set msbs, to catch carry out
t = t ^ r; // extract msbs, msb = 1 if t < 0x80
r = r - 0x01010101; // msb = 0, if t was 0x00 or 0x80
r = t & ~r; // msb = 1, if t was 0x00
t = r >> 7; // build mask
t = r - t; // from
r = t | r; // msbs
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetle4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.le %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(a));
c = vavrg4(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmple4(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetle4(a, b);
c = r << 8; // convert bool
r = c - r; // to mask
#else
asm("not.b32 %0, %0;" : "+r"(a));
c = vavrg4(a, b); // (b + ~a + 1) / 2 = (b - a) / 2
c = c & 0x80808080; // msbs = carry-outs
r = c >> 7; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetlt4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.lt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(a));
c = vavg4(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmplt4(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetlt4(a, b);
c = r << 8; // convert bool
r = c - r; // to mask
#else
asm("not.b32 %0, %0;" : "+r"(a));
c = vavg4(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down]
c = c & 0x80808080; // msbs = carry-outs
r = c >> 7; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetge4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.ge %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(b));
c = vavrg4(a, b); // (a + ~b + 1) / 2 = (a - b) / 2
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpge4(unsigned int a, unsigned int b)
{
unsigned int r, s;
#if __CUDA_ARCH__ >= 300
r = vsetge4(a, b);
s = r << 8; // convert bool
r = s - r; // to mask
#else
asm ("not.b32 %0,%0;" : "+r"(b));
r = vavrg4 (a, b); // (a + ~b + 1) / 2 = (a - b) / 2
r = r & 0x80808080; // msb = carry-outs
s = r >> 7; // build mask
s = r - s; // from
r = s | r; // msbs
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetgt4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.gt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int c;
asm("not.b32 %0, %0;" : "+r"(b));
c = vavg4(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpgt4(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetgt4(a, b);
c = r << 8; // convert bool
r = c - r; // to mask
#else
asm("not.b32 %0, %0;" : "+r"(b));
c = vavg4(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down]
c = c & 0x80808080; // msb = carry-outs
r = c >> 7; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vsetne4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vset4.u32.u32.ne %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
unsigned int c;
r = a ^ b; // 0x00 if a == b
c = r | 0x80808080; // set msbs, to catch carry out
c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
c = r | c; // msb = 1, if r was not 0x00
c = c & 0x80808080; // extract msbs
r = c >> 7; // convert to bool
#endif
return r;
}
static __device__ __forceinline__ unsigned int vcmpne4(unsigned int a, unsigned int b)
{
unsigned int r, c;
#if __CUDA_ARCH__ >= 300
r = vsetne4(a, b);
c = r << 8; // convert bool
r = c - r; // to mask
#else
// inspired by Alan Mycroft's null-byte detection algorithm:
// null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080))
r = a ^ b; // 0x00 if a == b
c = r | 0x80808080; // set msbs, to catch carry out
c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80
c = r | c; // msb = 1, if r was not 0x00
c = c & 0x80808080; // extract msbs
r = c >> 7; // convert
r = c - r; // msbs to
r = c | r; // mask
#endif
return r;
}
static __device__ __forceinline__ unsigned int vabsdiff4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vabsdiff4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vabsdiff.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vabsdiff.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vabsdiff.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vabsdiff.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = vcmpge4(a, b); // mask = 0xff if a >= b
r = a ^ b; //
s = (r & s) ^ b; // select a when a >= b, else select b => max(a,b)
r = s ^ r; // select a when b >= a, else select b => min(a,b)
r = s - r; // |a - b| = max(a,b) - min(a,b);
#endif
return r;
}
static __device__ __forceinline__ unsigned int vmax4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vmax4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vmax.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmax.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmax.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmax.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = vcmpge4(a, b); // mask = 0xff if a >= b
r = a & s; // select a when b >= a
s = b & ~s; // select b when b < a
r = r | s; // combine byte selections
#endif
return r; // byte-wise unsigned maximum
}
static __device__ __forceinline__ unsigned int vmin4(unsigned int a, unsigned int b)
{
unsigned int r = 0;
#if __CUDA_ARCH__ >= 300
asm("vmin4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#elif __CUDA_ARCH__ >= 200
asm("vmin.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmin.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmin.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
asm("vmin.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r));
#else
unsigned int s;
s = vcmpge4(b, a); // mask = 0xff if a >= b
r = a & s; // select a when b >= a
s = b & ~s; // select b when b < a
r = r | s; // combine byte selections
#endif
return r;
}
}}}
//! @endcond
#endif // OPENCV_CUDA_SIMD_FUNCTIONS_HPP