code_app/third_party/libnsbmp/source/libnsbmp.c

1415 lines
44 KiB
C

/*
* Copyright 2006 Richard Wilson <richard.wilson@netsurf-browser.org>
* Copyright 2008 Sean Fox <dyntryx@gmail.com>
*
* This file is part of NetSurf's libnsbmp, http://www.netsurf-browser.org/
* Licenced under the MIT License,
* http://www.opensource.org/licenses/mit-license.php
*/
/**
* \file
* BMP decoding implementation
*
* This library decode windows bitmaps and icons from their disc images.
*
* The image format is described in several documents:
* https://msdn.microsoft.com/en-us/library/dd183391(v=vs.85).aspx
* http://www.fileformat.info/format/bmp/egff.htm
* https://en.wikipedia.org/wiki/BMP_file_format
*
* Despite the format being clearly defined many bitmaps found on the web are
* not compliant and this implementation attempts to cope with as many issues
* as possible rather than simply failing.
*/
#include <assert.h>
//#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include "libnsbmp.h"
#include "log.h"
/* squashes unused variable compiler warnings */
#define UNUSED(x) ((x)=(x))
/* BMP entry sizes */
#define BMP_FILE_HEADER_SIZE 14
#define ICO_FILE_HEADER_SIZE 6
#define ICO_DIR_ENTRY_SIZE 16
/* the bitmap information header types (encoded as lengths) */
#define BITMAPCOREHEADER 12
#ifdef WE_NEED_INT8_READING_NOW
static inline int8_t read_int8(uint8_t* data, unsigned int o) {
return (int8_t)data[o];
}
#endif
static inline uint8_t read_uint8(uint8_t* data, unsigned int o) {
return (uint8_t)data[o];
}
static inline int16_t read_int16(uint8_t* data, unsigned int o) {
return (int16_t)(data[o] | (data[o + 1] << 8));
}
static inline uint16_t read_uint16(uint8_t* data, unsigned int o) {
return (uint16_t)(data[o] | (data[o + 1] << 8));
}
static inline int32_t read_int32(uint8_t* data, unsigned int o) {
return (int32_t)((unsigned)data[o] |
((unsigned)data[o + 1] << 8) |
((unsigned)data[o + 2] << 16) |
((unsigned)data[o + 3] << 24));
}
static inline uint32_t read_uint32(uint8_t* data, unsigned int o) {
return (uint32_t)((unsigned)data[o] |
((unsigned)data[o + 1] << 8) |
((unsigned)data[o + 2] << 16) |
((unsigned)data[o + 3] << 24));
}
/**
* Parse the bitmap info header
*/
static bmp_result bmp_info_header_parse(bmp_image* bmp, uint8_t* data)
{
uint32_t header_size;
uint32_t i;
uint8_t j;
int32_t width, height;
uint8_t palette_size;
unsigned int flags = 0;
/* must be at least enough data for a core header */
if (bmp->buffer_size < (BMP_FILE_HEADER_SIZE + BITMAPCOREHEADER)) {
return BMP_INSUFFICIENT_DATA;
}
header_size = read_uint32(data, 0);
/* ensure there is enough data for the declared header size*/
if ((bmp->buffer_size - BMP_FILE_HEADER_SIZE) < header_size) {
return BMP_INSUFFICIENT_DATA;
}
/* a variety of different bitmap headers can follow, depending
* on the BMP variant. The header length field determines the type.
*/
if (header_size == BITMAPCOREHEADER) {
/* the following header is for os/2 and windows 2.x and consists of:
*
* +0 UINT32 size of this header (in bytes)
* +4 INT16 image width (in pixels)
* +6 INT16 image height (in pixels)
* +8 UINT16 number of colour planes (always 1)
* +10 UINT16 number of bits per pixel
*/
width = read_int16(data, 4);
height = read_int16(data, 6);
if ((width <= 0) || (height == 0))
return BMP_DATA_ERROR;
if (height < 0) {
bmp->reversed = true;
height = -height;
}
/* ICOs only support 256*256 resolutions
* In the case of the ICO header, the height is actually the added
* height of XOR-Bitmap and AND-Bitmap (double the visible height)
* Technically we could remove this check and ICOs with bitmaps
* of any size could be processed; this is to conform to the spec.
*/
if (bmp->ico) {
if ((width > 256) || (height > 512)) {
return BMP_DATA_ERROR;
}
else {
bmp->width = width;
bmp->height = height / 2;
}
}
else {
bmp->width = width;
bmp->height = height;
}
if (read_uint16(data, 8) != 1)
return BMP_DATA_ERROR;
bmp->bpp = read_uint16(data, 10);
/**
* The bpp value should be in the range 1-32, but the only
* values considered legal are:
* RGB ENCODING: 1, 4, 8, 16, 24 and 32
*/
if ((bmp->bpp != 1) && (bmp->bpp != 4) &&
(bmp->bpp != 8) &&
(bmp->bpp != 16) &&
(bmp->bpp != 24) &&
(bmp->bpp != 32))
return BMP_DATA_ERROR;
if (bmp->bpp < 16)
bmp->colours = (1 << bmp->bpp);
palette_size = 3;
}
else if (header_size < 40) {
return BMP_DATA_ERROR;
}
else {
/* the following header is for windows 3.x and onwards. it is a
* minimum of 40 bytes and (as of Windows 95) a maximum of 108 bytes.
*
* +0 UINT32 size of this header (in bytes)
* +4 INT32 image width (in pixels)
* +8 INT32 image height (in pixels)
* +12 UINT16 number of colour planes (always 1)
* +14 UINT16 number of bits per pixel
* +16 UINT32 compression methods used
* +20 UINT32 size of bitmap (in bytes)
* +24 UINT32 horizontal resolution (in pixels per meter)
* +28 UINT32 vertical resolution (in pixels per meter)
* +32 UINT32 number of colours in the image
* +36 UINT32 number of important colours
* +40 UINT32 mask identifying bits of red component
* +44 UINT32 mask identifying bits of green component
* +48 UINT32 mask identifying bits of blue component
* +52 UINT32 mask identifying bits of alpha component
* +56 UINT32 color space type
* +60 UINT32 x coordinate of red endpoint
* +64 UINT32 y coordinate of red endpoint
* +68 UINT32 z coordinate of red endpoint
* +72 UINT32 x coordinate of green endpoint
* +76 UINT32 y coordinate of green endpoint
* +80 UINT32 z coordinate of green endpoint
* +84 UINT32 x coordinate of blue endpoint
* +88 UINT32 y coordinate of blue endpoint
* +92 UINT32 z coordinate of blue endpoint
* +96 UINT32 gamma red coordinate scale value
* +100 UINT32 gamma green coordinate scale value
* +104 UINT32 gamma blue coordinate scale value
*/
width = read_int32(data, 4);
height = read_int32(data, 8);
if ((width <= 0) || (height == 0))
return BMP_DATA_ERROR;
if (height < 0) {
bmp->reversed = true;
if (height <= -INT32_MAX) {
height = INT32_MAX;
}
else {
height = -height;
}
}
/* ICOs only support 256*256 resolutions
* In the case of the ICO header, the height is actually the added
* height of XOR-Bitmap and AND-Bitmap (double the visible height)
* Technically we could remove this check and ICOs with bitmaps
* of any size could be processed; this is to conform to the spec.
*/
if (bmp->ico) {
if ((width > 256) || (height > 512)) {
return BMP_DATA_ERROR;
}
else {
bmp->width = width;
bmp->height = height / 2;
}
}
else {
bmp->width = width;
bmp->height = height;
}
if (read_uint16(data, 12) != 1)
return BMP_DATA_ERROR;
bmp->bpp = read_uint16(data, 14);
if (bmp->bpp == 0)
bmp->bpp = 8;
bmp->encoding = (bmp_encoding)read_uint32(data, 16);
/**
* The bpp value should be in the range 1-32, but the only
* values considered legal are:
* RGB ENCODING: 1, 4, 8, 16, 24 and 32
* RLE4 ENCODING: 4
* RLE8 ENCODING: 8
* BITFIELD ENCODING: 16 and 32
*/
switch (bmp->encoding) {
case BMP_ENCODING_RGB:
if ((bmp->bpp != 1) && (bmp->bpp != 4) &&
(bmp->bpp != 8) &&
(bmp->bpp != 16) &&
(bmp->bpp != 24) &&
(bmp->bpp != 32))
return BMP_DATA_ERROR;
break;
case BMP_ENCODING_RLE8:
if (bmp->bpp != 8)
return BMP_DATA_ERROR;
break;
case BMP_ENCODING_RLE4:
if (bmp->bpp != 4)
return BMP_DATA_ERROR;
break;
case BMP_ENCODING_BITFIELDS:
if ((bmp->bpp != 16) && (bmp->bpp != 32))
return BMP_DATA_ERROR;
break;
/* invalid encoding */
default:
return BMP_DATA_ERROR;
break;
}
/* Bitfield encoding means we have red, green, blue, and alpha masks.
* Here we acquire the masks and determine the required bit shift to
* align them in our 24-bit color 8-bit alpha format.
*/
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
if (header_size == 40) {
header_size += 12;
if (bmp->buffer_size < (14 + header_size))
return BMP_INSUFFICIENT_DATA;
for (i = 0; i < 3; i++)
bmp->mask[i] = read_uint32(data, 40 + (i << 2));
}
else {
if (header_size < 56)
return BMP_INSUFFICIENT_DATA;
for (i = 0; i < 4; i++)
bmp->mask[i] = read_uint32(data, 40 + (i << 2));
}
for (i = 0; i < 4; i++) {
if (bmp->mask[i] == 0)
break;
for (j = 31; j > 0; j--)
if (bmp->mask[i] & ((unsigned)1 << j)) {
if ((j - 7) > 0)
bmp->mask[i] &= (unsigned)0xff << (j - 7);
else
bmp->mask[i] &= 0xff >> (-(j - 7));
bmp->shift[i] = (i << 3) - (j - 7);
break;
}
}
}
bmp->x_pels_per_meter = read_int32(data, 24);
bmp->y_pels_per_meter = read_int32(data, 28);
bmp->colours = read_uint32(data, 32);
if (bmp->colours == 0 && bmp->bpp < 16)
bmp->colours = (1 << bmp->bpp);
palette_size = 4;
}
data += header_size;
/* if there's no alpha mask, flag the bmp opaque */
if ((!bmp->ico) && (bmp->mask[3] == 0)) {
flags |= BMP_OPAQUE;
bmp->opaque = true;
}
/* we only have a palette for <16bpp */
if (bmp->bpp < 16) {
/* we now have a series of palette entries of the format:
*
* +0 BYTE blue
* +1 BYTE green
* +2 BYTE red
*
* if the palette is from an OS/2 or Win2.x file then the entries
* are padded with an extra byte.
*/
/* boundary checking */
if (bmp->buffer_size < (14 + header_size + ((uint64_t)4 * bmp->colours)))
return BMP_INSUFFICIENT_DATA;
/* create the colour table */
bmp->colour_table = (uint32_t*)malloc(bmp->colours * 4);
if (!bmp->colour_table)
return BMP_INSUFFICIENT_MEMORY;
for (i = 0; i < bmp->colours; i++) {
uint32_t colour = data[2] | (data[1] << 8) | (data[0] << 16);
if (bmp->opaque)
colour |= ((uint32_t)0xff << 24);
data += palette_size;
bmp->colour_table[i] = read_uint32((uint8_t*)&colour, 0);
}
/* some bitmaps have a bad offset if there is a pallete, work
* round this by fixing up the data offset to after the palette
* but only if there is data following the palette as some
* bitmaps encode data in the palette!
*/
if ((bmp->bitmap_offset < (uint32_t)(data - bmp->bmp_data)) &&
((bmp->buffer_size - (data - bmp->bmp_data)) > 0)) {
bmp->bitmap_offset = (uint32_t)(data - bmp->bmp_data);
}
}
/* create our bitmap */
flags |= BMP_NEW | BMP_CLEAR_MEMORY;
bmp->bitmap = bmp->bitmap_callbacks.bitmap_create(bmp->width, bmp->height, flags);
if (!bmp->bitmap) {
if (bmp->colour_table)
free(bmp->colour_table);
bmp->colour_table = NULL;
return BMP_INSUFFICIENT_MEMORY;
}
/* BMPs within ICOs don't have BMP file headers, so the image data should
* always be right after the colour table.
*/
if (bmp->ico)
bmp->bitmap_offset = (uint32_t)((intptr_t)data - (intptr_t)bmp->bmp_data);
return BMP_OK;
}
/**
* Parse the bitmap file header
*
* \param bmp The bitmap.
* \param data The data for the file header
* \return BMP_OK on success or error code on faliure
*/
static bmp_result bmp_file_header_parse(bmp_image* bmp, uint8_t* data)
{
/* standard 14-byte BMP file header is:
*
* +0 UINT16 File Type ('BM')
* +2 UINT32 Size of File (in bytes)
* +6 INT16 Reserved Field (1)
* +8 INT16 Reserved Field (2)
* +10 UINT32 Starting Position of Image Data (offset in bytes)
*/
if (bmp->buffer_size < BMP_FILE_HEADER_SIZE)
return BMP_INSUFFICIENT_DATA;
if ((data[0] != (uint8_t)'B') || (data[1] != (uint8_t)'M'))
return BMP_DATA_ERROR;
bmp->bitmap_offset = read_uint32(data, 10);
/* check the offset to data lies within the file */
if (bmp->bitmap_offset >= bmp->buffer_size) {
return BMP_INSUFFICIENT_DATA;
}
return BMP_OK;
}
/**
* Allocates memory for the next BMP in an ICO collection
*
* Sets proper structure values
*
* \param ico the ICO collection to add the image to
* \param image a pointer to the ICO image to be initialised
*/
static bmp_result next_ico_image(ico_collection* ico, ico_image* image) {
bmp_create(&image->bmp, &ico->bitmap_callbacks);
image->next = ico->first;
ico->first = image;
return BMP_OK;
}
/**
* Parse the icon file header
*
* \param ico The icon collection.
* \param data The header data to parse.
* \return BMP_OK on successful parse else error code
*/
static bmp_result ico_header_parse(ico_collection* ico, uint8_t* data)
{
uint16_t count, i;
bmp_result result;
int area, max_area = 0;
/* 6-byte ICO file header is:
*
* +0 INT16 Reserved (should be 0)
* +2 UINT16 Type (1 for ICO, 2 for CUR)
* +4 UINT16 Number of BMPs to follow
*/
if (ico->buffer_size < ICO_FILE_HEADER_SIZE)
return BMP_INSUFFICIENT_DATA;
// if (read_int16(data, 2) != 0x0000)
// return BMP_DATA_ERROR;
if (read_uint16(data, 2) != 0x0001)
return BMP_DATA_ERROR;
count = read_uint16(data, 4);
if (count == 0)
return BMP_DATA_ERROR;
data += ICO_FILE_HEADER_SIZE;
/* check if we have enough data for the directory */
if (ico->buffer_size < (uint32_t)(ICO_FILE_HEADER_SIZE + (ICO_DIR_ENTRY_SIZE * count)))
return BMP_INSUFFICIENT_DATA;
/* Decode the BMP files.
*
* 16-byte ICO directory entry is:
*
* +0 UINT8 Width (0 for 256 pixels)
* +1 UINT8 Height (0 for 256 pixels)
* +2 UINT8 Colour count (0 if more than 256 colours)
* +3 INT8 Reserved (should be 0, but may not be)
* +4 UINT16 Colour Planes (should be 0 or 1)
* +6 UINT16 Bits Per Pixel
* +8 UINT32 Size of BMP info header + bitmap data in bytes
* +12 UINT32 Offset (points to the BMP info header, not the bitmap data)
*/
for (i = 0; i < count; i++) {
ico_image* image;
image = (ico_image*)calloc(1, sizeof(ico_image));
if (!image)
return BMP_INSUFFICIENT_MEMORY;
result = next_ico_image(ico, image);
if (result != BMP_OK)
return result;
image->bmp.width = read_uint8(data, 0);
if (image->bmp.width == 0)
image->bmp.width = 256;
image->bmp.height = read_uint8(data, 1);
if (image->bmp.height == 0)
image->bmp.height = 256;
image->bmp.buffer_size = read_uint32(data, 8);
image->bmp.bmp_data = ico->ico_data + read_uint32(data, 12);
if (image->bmp.bmp_data + image->bmp.buffer_size >
ico->ico_data + ico->buffer_size)
return BMP_INSUFFICIENT_DATA;
image->bmp.ico = true;
data += ICO_DIR_ENTRY_SIZE;
/* Ensure that the bitmap data resides in the buffer */
if (image->bmp.bmp_data - ico->ico_data >= 0 &&
(uint32_t)(image->bmp.bmp_data -
ico->ico_data) >= ico->buffer_size)
return BMP_DATA_ERROR;
/* Ensure that we have sufficient data to read the bitmap */
if (image->bmp.buffer_size - ICO_DIR_ENTRY_SIZE >=
ico->buffer_size - (ico->ico_data - data))
return BMP_INSUFFICIENT_DATA;
result = bmp_info_header_parse(&image->bmp,
image->bmp.bmp_data);
if (result != BMP_OK)
return result;
/* adjust the size based on the images available */
area = image->bmp.width * image->bmp.height;
if (area > max_area) {
ico->width = image->bmp.width;
ico->height = image->bmp.height;
max_area = area;
}
}
return BMP_OK;
}
/**
* Decode BMP data stored in 32bpp colour.
*
* \param bmp the BMP image to decode
* \param start the data to decode, updated to last byte read on success
* \param bytes the number of bytes of data available
* \return BMP_OK on success
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
* in this case, the image may be partially viewable
*/
static bmp_result bmp_decode_rgb32(bmp_image* bmp, uint8_t** start, int bytes)
{
uint8_t* top, * bottom, * end, * data;
uint32_t* scanline;
uint32_t x, y;
uint32_t swidth;
uint8_t i;
uint32_t word;
assert(bmp->bpp == 32);
data = *start;
swidth = (uint32_t)(bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap)) * bmp->width;
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
if (!top)
return BMP_INSUFFICIENT_MEMORY;
bottom = top + (uint64_t)swidth * (bmp->height - 1);
end = data + bytes;
bmp->decoded = true;
/* Determine transparent index */
if (bmp->limited_trans) {
if ((data + 4) > end)
return BMP_INSUFFICIENT_DATA;
if (bmp->encoding == BMP_ENCODING_BITFIELDS)
bmp->transparent_index = read_uint32(data, 0);
else
bmp->transparent_index = data[2] | (data[1] << 8) | (data[0] << 16);
}
for (y = 0; y < bmp->height; y++) {
if ((data + (4 * bmp->width)) > end)
return BMP_INSUFFICIENT_DATA;
if (bmp->reversed)
scanline = (uint32_t*)(top + (y * swidth));
else
scanline = (uint32_t*)(bottom - (y * swidth));
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
for (x = 0; x < bmp->width; x++) {
word = read_uint32(data, 0);
for (i = 0; i < 4; i++)
if (bmp->shift[i] > 0)
scanline[x] |= ((word & bmp->mask[i]) << bmp->shift[i]);
else
scanline[x] |= ((word & bmp->mask[i]) >> (-bmp->shift[i]));
/* 32-bit BMPs have alpha masks, but sometimes they're not utilized */
if (bmp->opaque)
scanline[x] |= ((unsigned)0xff << 24);
data += 4;
scanline[x] = read_uint32((uint8_t*)&scanline[x], 0);
}
}
else {
for (x = 0; x < bmp->width; x++) {
scanline[x] = data[2] | (data[1] << 8) | (data[0] << 16);
if ((bmp->limited_trans) && (scanline[x] == bmp->transparent_index)) {
scanline[x] = bmp->trans_colour;
}
if (bmp->opaque) {
scanline[x] |= ((unsigned)0xff << 24);
}
else {
scanline[x] |= (unsigned)data[3] << 24;
}
data += 4;
scanline[x] = read_uint32((uint8_t*)&scanline[x], 0);
}
}
}
*start = data;
return BMP_OK;
}
/**
* Decode BMP data stored in 24bpp colour.
*
* \param bmp the BMP image to decode
* \param start the data to decode, updated to last byte read on success
* \param bytes the number of bytes of data available
* \return BMP_OK on success
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
* in this case, the image may be partially viewable
*/
static bmp_result bmp_decode_rgb24(bmp_image* bmp, uint8_t** start, int bytes)
{
uint8_t* top, * bottom, * end, * data;
uint32_t* scanline;
uint32_t x, y;
uint32_t swidth;
intptr_t addr;
assert(bmp->encoding == BMP_ENCODING_RGB);
assert(bmp->bpp == 24);
data = *start;
swidth = (uint32_t)(bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap)) * bmp->width;
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
if (!top) {
return BMP_INSUFFICIENT_MEMORY;
}
bottom = top + (uint64_t)swidth * (bmp->height - 1);
end = data + bytes;
addr = ((intptr_t)data) & 3;
bmp->decoded = true;
/* Determine transparent index */
if (bmp->limited_trans) {
if ((data + 3) > end) {
return BMP_INSUFFICIENT_DATA;
}
bmp->transparent_index = data[2] | (data[1] << 8) | (data[0] << 16);
}
for (y = 0; y < bmp->height; y++) {
if ((data + (3 * bmp->width)) > end) {
return BMP_INSUFFICIENT_DATA;
}
if (bmp->reversed) {
scanline = (uint32_t*)(top + (y * swidth));
}
else {
scanline = (uint32_t*)(bottom - (y * swidth));
}
for (x = 0; x < bmp->width; x++) {
scanline[x] = data[2] | (data[1] << 8) | (data[0] << 16);
if ((bmp->limited_trans) && (scanline[x] == bmp->transparent_index)) {
scanline[x] = bmp->trans_colour;
}
else {
scanline[x] |= ((uint32_t)0xff << 24);
}
data += 3;
scanline[x] = read_uint32((uint8_t*)&scanline[x], 0);
}
while (addr != (((intptr_t)data) & 3)) {
data++;
}
}
*start = data;
return BMP_OK;
}
/**
* Decode BMP data stored in 16bpp colour.
*
* \param bmp the BMP image to decode
* \param start the data to decode, updated to last byte read on success
* \param bytes the number of bytes of data available
* \return BMP_OK on success
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
* in this case, the image may be partially viewable
*/
static bmp_result bmp_decode_rgb16(bmp_image* bmp, uint8_t** start, int bytes)
{
uint8_t* top, * bottom, * end, * data;
uint32_t* scanline;
uint32_t x, y, swidth;
intptr_t addr;
uint8_t i;
uint16_t word;
data = *start;
swidth = (uint32_t)(bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap)) * bmp->width;
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
if (!top)
return BMP_INSUFFICIENT_MEMORY;
bottom = top + (uint64_t)swidth * (bmp->height - 1);
end = data + bytes;
addr = ((intptr_t)data) & 3;
bmp->decoded = true;
/* Determine transparent index */
if (bmp->limited_trans) {
if ((data + 2) > end)
return BMP_INSUFFICIENT_DATA;
bmp->transparent_index = read_uint16(data, 0);
}
for (y = 0; y < bmp->height; y++) {
if ((data + (2 * bmp->width)) > end)
return BMP_INSUFFICIENT_DATA;
if (bmp->reversed)
scanline = (uint32_t*)(top + (y * swidth));
else
scanline = (uint32_t*)(bottom - (y * swidth));
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
for (x = 0; x < bmp->width; x++) {
word = read_uint16(data, 0);
if ((bmp->limited_trans) && (word == bmp->transparent_index))
scanline[x] = bmp->trans_colour;
else {
scanline[x] = 0;
for (i = 0; i < 4; i++)
if (bmp->shift[i] > 0)
scanline[x] |= ((word & bmp->mask[i]) << bmp->shift[i]);
else
scanline[x] |= ((word & bmp->mask[i]) >> (-bmp->shift[i]));
if (bmp->opaque)
scanline[x] |= ((unsigned)0xff << 24);
}
data += 2;
scanline[x] = read_uint32((uint8_t*)&scanline[x], 0);
}
}
else {
for (x = 0; x < bmp->width; x++) {
word = read_uint16(data, 0);
if ((bmp->limited_trans) && (word == bmp->transparent_index))
scanline[x] = bmp->trans_colour;
else {
/* 16-bit RGB defaults to RGB555 */
scanline[x] = ((word & (31 << 0)) << 19) |
((word & (31 << 5)) << 6) |
((word & (31 << 10)) >> 7);
}
if (bmp->opaque)
scanline[x] |= ((unsigned)0xff << 24);
data += 2;
scanline[x] = read_uint32((uint8_t*)&scanline[x], 0);
}
}
while (addr != (((intptr_t)data) & 3))
data += 2;
}
*start = data;
return BMP_OK;
}
/**
* Decode BMP data stored with a palette and in 8bpp colour or less.
*
* \param bmp the BMP image to decode
* \param start the data to decode, updated to last byte read on success
* \param bytes the number of bytes of data available
* \return BMP_OK on success
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
* in this case, the image may be partially viewable
*/
static bmp_result bmp_decode_rgb(bmp_image* bmp, uint8_t** start, int bytes)
{
uint8_t* top, * bottom, * end, * data;
uint32_t* scanline;
intptr_t addr;
uint32_t x, y, swidth;
uint8_t bit_shifts[8];
uint8_t ppb = 8 / bmp->bpp;
uint8_t bit_mask = (1 << bmp->bpp) - 1;
uint8_t cur_byte = 0, bit, i;
/* Belt and braces, we shouldn't get here unless this holds */
assert(ppb >= 1);
for (i = 0; i < ppb; i++)
bit_shifts[i] = 8 - ((i + 1) * bmp->bpp);
data = *start;
swidth = (uint32_t)(bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap)) * bmp->width;
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
if (!top)
return BMP_INSUFFICIENT_MEMORY;
bottom = top + (uint64_t)swidth * (bmp->height - 1);
end = data + bytes;
addr = ((intptr_t)data) & 3;
bmp->decoded = true;
/* Determine transparent index */
if (bmp->limited_trans) {
uint32_t idx = (*data >> bit_shifts[0]) & bit_mask;
if (idx >= bmp->colours)
return BMP_DATA_ERROR;
bmp->transparent_index = bmp->colour_table[idx];
}
for (y = 0; y < bmp->height; y++) {
bit = 8;
if ((data + ((bmp->width + ppb - 1) / ppb)) > end)
return BMP_INSUFFICIENT_DATA;
if (bmp->reversed)
scanline = (uint32_t*)(top + (y * swidth));
else
scanline = (uint32_t*)(bottom - (y * swidth));
for (x = 0; x < bmp->width; x++) {
uint32_t idx;
if (bit >= ppb) {
bit = 0;
cur_byte = *data++;
}
idx = (cur_byte >> bit_shifts[bit++]) & bit_mask;
if (idx < bmp->colours) {
/* ensure colour table index is in bounds */
scanline[x] = bmp->colour_table[idx];
if ((bmp->limited_trans) &&
(scanline[x] == bmp->transparent_index)) {
scanline[x] = bmp->trans_colour;
}
}
}
while (addr != (((intptr_t)data) & 3))
data++;
}
*start = data;
return BMP_OK;
}
/**
* Decode a 1bpp mask for an ICO
*
* \param bmp the BMP image to decode
* \param data the data to decode
* \param bytes the number of bytes of data available
* \return BMP_OK on success
*/
static bmp_result bmp_decode_mask(bmp_image* bmp, uint8_t* data, int bytes)
{
uint8_t* top, * bottom, * end;
uint32_t* scanline;
intptr_t addr;
uint32_t x, y, swidth;
uint32_t cur_byte = 0;
swidth = (uint32_t)(bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap)) * bmp->width;
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
if (!top)
return BMP_INSUFFICIENT_MEMORY;
bottom = top + (uint64_t)swidth * (bmp->height - 1);
end = data + bytes;
addr = ((intptr_t)data) & 3;
for (y = 0; y < bmp->height; y++) {
if ((data + (bmp->width >> 3)) > end)
return BMP_INSUFFICIENT_DATA;
scanline = (uint32_t*)(bottom - (y * swidth));
for (x = 0; x < bmp->width; x++) {
if ((x & 7) == 0)
cur_byte = *data++;
scanline[x] = read_uint32((uint8_t*)&scanline[x], 0);
if ((cur_byte & 128) == 0) {
scanline[x] |= ((unsigned)0xff << 24);
}
else {
scanline[x] &= 0xffffff;
}
scanline[x] = read_uint32((uint8_t*)&scanline[x], 0);
cur_byte = cur_byte << 1;
}
while (addr != (((intptr_t)data) & 3))
data++;
}
return BMP_OK;
}
/**
* Decode BMP data stored encoded in RLE8.
*
* \param bmp the BMP image to decode
* \param data the data to decode
* \param bytes the number of bytes of data available
* \return BMP_OK on success
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
* in this case, the image may be partially viewable
*/
static bmp_result
bmp_decode_rle8(bmp_image* bmp, uint8_t* data, int bytes)
{
uint8_t* top, * bottom, * end;
uint32_t* scanline;
uint32_t swidth;
uint32_t i, length, pixels_left;
uint32_t x = 0, y = 0, last_y = 0;
uint32_t pixel = 0;
if (bmp->ico)
return BMP_DATA_ERROR;
swidth = (uint32_t)(bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap)) * bmp->width;
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
if (!top)
return BMP_INSUFFICIENT_MEMORY;
bottom = top + (uint64_t)swidth * (bmp->height - 1);
end = data + bytes;
bmp->decoded = true;
do {
if (data + 2 > end)
return BMP_INSUFFICIENT_DATA;
length = *data++;
if (length == 0) {
length = *data++;
switch (length) {
case 0:
/* 00 - 00 means end of scanline */
x = 0;
if (last_y == y) {
y++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
}
last_y = y;
break;
case 1:
/* 00 - 01 means end of RLE data */
return BMP_OK;
case 2:
/* 00 - 02 - XX - YY means move cursor */
if (data + 2 > end)
return BMP_INSUFFICIENT_DATA;
x += *data++;
if (x >= bmp->width)
return BMP_DATA_ERROR;
y += *data++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
break;
default:
/* 00 - NN means escape NN pixels */
if (bmp->reversed) {
pixels_left = (bmp->height - y) * bmp->width - x;
scanline = (uint32_t*)(top + (y * swidth));
}
else {
pixels_left = (y + 1) * bmp->width - x;
scanline = (uint32_t*)(bottom - (y * swidth));
}
if (length > pixels_left)
length = pixels_left;
if (data + length > end)
return BMP_INSUFFICIENT_DATA;
/* the following code could be easily optimised
* by simply checking the bounds on entry and
* using some simple copying routines if so
*/
for (i = 0; i < length; i++) {
uint32_t idx = (uint32_t)*data++;
if (x >= bmp->width) {
x = 0;
y++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
if (bmp->reversed) {
scanline += bmp->width;
}
else {
scanline -= bmp->width;
}
}
if (idx >= bmp->colours)
return BMP_DATA_ERROR;
scanline[x++] = bmp->colour_table[idx];
}
if ((length & 1) && (*data++ != 0x00))
return BMP_DATA_ERROR;
break;
}
}
else {
uint32_t idx;
/* NN means perform RLE for NN pixels */
if (bmp->reversed) {
pixels_left = (bmp->height - y) * bmp->width - x;
scanline = (uint32_t*)(top + (y * swidth));
}
else {
pixels_left = (y + 1) * bmp->width - x;
scanline = (uint32_t*)(bottom - (y * swidth));
}
if (length > pixels_left)
length = pixels_left;
/* boundary checking */
if (data + 1 > end)
return BMP_INSUFFICIENT_DATA;
/* the following code could be easily optimised by
* simply checking the bounds on entry and using some
* simply copying routines if so
*/
idx = (uint32_t)*data++;
if (idx >= bmp->colours)
return BMP_DATA_ERROR;
pixel = bmp->colour_table[idx];
for (i = 0; i < length; i++) {
if (x >= bmp->width) {
x = 0;
y++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
if (bmp->reversed) {
scanline += bmp->width;
}
else {
scanline -= bmp->width;
}
}
scanline[x++] = pixel;
}
}
} while (data < end);
return BMP_OK;
}
/**
* Decode BMP data stored encoded in RLE4.
*
* \param bmp the BMP image to decode
* \param data the data to decode
* \param bytes the number of bytes of data available
* \return BMP_OK on success
* BMP_INSUFFICIENT_DATA if the bitmap data ends unexpectedly;
* in this case, the image may be partially viewable
*/
static bmp_result
bmp_decode_rle4(bmp_image* bmp, uint8_t* data, int bytes)
{
uint8_t* top, * bottom, * end;
uint32_t* scanline;
uint32_t swidth;
uint32_t i, length, pixels_left;
uint32_t x = 0, y = 0, last_y = 0;
uint32_t pixel = 0, pixel2;
if (bmp->ico)
return BMP_DATA_ERROR;
swidth = (uint32_t)(bmp->bitmap_callbacks.bitmap_get_bpp(bmp->bitmap)) * bmp->width;
top = bmp->bitmap_callbacks.bitmap_get_buffer(bmp->bitmap);
if (!top)
return BMP_INSUFFICIENT_MEMORY;
bottom = top + (uint64_t)swidth * (bmp->height - 1);
end = data + bytes;
bmp->decoded = true;
do {
if (data + 2 > end)
return BMP_INSUFFICIENT_DATA;
length = *data++;
if (length == 0) {
length = *data++;
switch (length) {
case 0:
/* 00 - 00 means end of scanline */
x = 0;
if (last_y == y) {
y++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
}
last_y = y;
break;
case 1:
/* 00 - 01 means end of RLE data */
return BMP_OK;
case 2:
/* 00 - 02 - XX - YY means move cursor */
if (data + 2 > end)
return BMP_INSUFFICIENT_DATA;
x += *data++;
if (x >= bmp->width)
return BMP_DATA_ERROR;
y += *data++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
break;
default:
/* 00 - NN means escape NN pixels */
if (bmp->reversed) {
pixels_left = (bmp->height - y) * bmp->width - x;
scanline = (uint32_t*)(top + (y * swidth));
}
else {
pixels_left = (y + 1) * bmp->width - x;
scanline = (uint32_t*)(bottom - (y * swidth));
}
if (length > pixels_left)
length = pixels_left;
if (data + ((length + 1) / 2) > end)
return BMP_INSUFFICIENT_DATA;
/* the following code could be easily optimised
* by simply checking the bounds on entry and
* using some simple copying routines
*/
for (i = 0; i < length; i++) {
if (x >= bmp->width) {
x = 0;
y++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
if (bmp->reversed) {
scanline += bmp->width;
}
else {
scanline -= bmp->width;
}
}
if ((i & 1) == 0) {
pixel = *data++;
if ((pixel >> 4) >= bmp->colours)
return BMP_DATA_ERROR;
scanline[x++] = bmp->colour_table
[pixel >> 4];
}
else {
if ((pixel & 0xf) >= bmp->colours)
return BMP_DATA_ERROR;
scanline[x++] = bmp->colour_table
[pixel & 0xf];
}
}
length = (length + 1) >> 1;
if ((length & 1) && (*data++ != 0x00))
return BMP_DATA_ERROR;
break;
}
}
else {
/* NN means perform RLE for NN pixels */
if (bmp->reversed) {
pixels_left = (bmp->height - y) * bmp->width - x;
scanline = (uint32_t*)(top + (y * swidth));
}
else {
pixels_left = (y + 1) * bmp->width - x;
scanline = (uint32_t*)(bottom - (y * swidth));
}
if (length > pixels_left)
length = pixels_left;
/* boundary checking */
if (data + 1 > end)
return BMP_INSUFFICIENT_DATA;
/* the following code could be easily optimised by
* simply checking the bounds on entry and using some
* simple copying routines
*/
pixel2 = *data++;
if ((pixel2 >> 4) >= bmp->colours ||
(pixel2 & 0xf) >= bmp->colours)
return BMP_DATA_ERROR;
pixel = bmp->colour_table[pixel2 >> 4];
pixel2 = bmp->colour_table[pixel2 & 0xf];
for (i = 0; i < length; i++) {
if (x >= bmp->width) {
x = 0;
y++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
if (bmp->reversed) {
scanline += bmp->width;
}
else {
scanline -= bmp->width;
}
}
if ((i & 1) == 0)
scanline[x++] = pixel;
else
scanline[x++] = pixel2;
}
}
} while (data < end);
return BMP_OK;
}
/* exported interface documented in libnsbmp.h */
bmp_result
bmp_create(bmp_image* bmp,
bmp_bitmap_callback_vt* bitmap_callbacks)
{
memset(bmp, 0, sizeof(bmp_image));
bmp->bitmap_callbacks = *bitmap_callbacks;
return BMP_OK;
}
/* exported interface documented in libnsbmp.h */
bmp_result
ico_collection_create(ico_collection* ico,
bmp_bitmap_callback_vt* bitmap_callbacks)
{
memset(ico, 0, sizeof(ico_collection));
ico->bitmap_callbacks = *bitmap_callbacks;
return BMP_OK;
}
/* exported interface documented in libnsbmp.h */
bmp_result bmp_analyse(bmp_image* bmp, size_t size, uint8_t* data)
{
bmp_result res;
/* ensure we aren't already initialised */
if (bmp->bitmap) {
return BMP_OK;
}
/* initialize source data values */
bmp->buffer_size = (uint32_t)size;
bmp->bmp_data = data;
res = bmp_file_header_parse(bmp, data);
if (res == BMP_OK) {
res = bmp_info_header_parse(bmp, data + BMP_FILE_HEADER_SIZE);
}
return res;
}
/* exported interface documented in libnsbmp.h */
bmp_result ico_analyse(ico_collection* ico, size_t size, uint8_t* data)
{
/* ensure we aren't already initialised */
if (ico->first)
return BMP_OK;
/* initialize values */
ico->buffer_size = (uint32_t)size;
ico->ico_data = data;
return ico_header_parse(ico, data);
}
/* exported interface documented in libnsbmp.h */
bmp_result bmp_decode(bmp_image* bmp)
{
uint8_t* data;
uint32_t bytes;
bmp_result result = BMP_OK;
assert(bmp->bitmap);
data = bmp->bmp_data + bmp->bitmap_offset;
bytes = bmp->buffer_size - bmp->bitmap_offset;
switch (bmp->encoding) {
case BMP_ENCODING_RGB:
switch (bmp->bpp) {
case 32:
result = bmp_decode_rgb32(bmp, &data, bytes);
break;
case 24:
result = bmp_decode_rgb24(bmp, &data, bytes);
break;
case 16:
result = bmp_decode_rgb16(bmp, &data, bytes);
break;
default:
result = bmp_decode_rgb(bmp, &data, bytes);
break;
}
break;
case BMP_ENCODING_RLE8:
result = bmp_decode_rle8(bmp, data, bytes);
break;
case BMP_ENCODING_RLE4:
result = bmp_decode_rle4(bmp, data, bytes);
break;
case BMP_ENCODING_BITFIELDS:
switch (bmp->bpp) {
case 32:
result = bmp_decode_rgb32(bmp, &data, bytes);
break;
case 16:
result = bmp_decode_rgb16(bmp, &data, bytes);
break;
default:
result = BMP_DATA_ERROR;
break;
}
break;
}
/* icons with less than 32bpp have a 1bpp alpha mask */
if ((result == BMP_OK) && (bmp->ico) && (bmp->bpp != 32)) {
bytes = (uint32_t)((uintptr_t)bmp->bmp_data + bmp->buffer_size - (uintptr_t)data);
result = bmp_decode_mask(bmp, data, bytes);
}
return result;
}
/* exported interface documented in libnsbmp.h */
bmp_result bmp_decode_trans(bmp_image* bmp, uint32_t colour)
{
bmp->limited_trans = true;
bmp->trans_colour = colour;
return bmp_decode(bmp);
}
/* exported interface documented in libnsbmp.h */
bmp_image* ico_find(ico_collection* ico, uint16_t width, uint16_t height)
{
bmp_image* bmp = NULL;
ico_image* image;
int x, y, cur, distance = (1 << 24);
if (width == 0)
width = ico->width;
if (height == 0)
height = ico->height;
for (image = ico->first; image; image = image->next) {
if ((image->bmp.width == width) && (image->bmp.height == height))
return &image->bmp;
x = image->bmp.width - width;
y = image->bmp.height - height;
cur = (x * x) + (y * y);
if (cur < distance) {
distance = cur;
bmp = &image->bmp;
}
}
return bmp;
}
/* exported interface documented in libnsbmp.h */
void bmp_finalise(bmp_image* bmp)
{
if (bmp->bitmap)
bmp->bitmap_callbacks.bitmap_destroy(bmp->bitmap);
bmp->bitmap = NULL;
if (bmp->colour_table)
free(bmp->colour_table);
bmp->colour_table = NULL;
}
/* exported interface documented in libnsbmp.h */
void ico_finalise(ico_collection* ico)
{
ico_image* image;
for (image = ico->first; image; image = image->next)
bmp_finalise(&image->bmp);
while (ico->first) {
image = ico->first;
ico->first = image->next;
free(image);
}
}