/********************************************************************** * File: normalis.cpp (Formerly denorm.c) * Description: Code for the DENORM class. * Author: Ray Smith * Created: Thu Apr 23 09:22:43 BST 1992 * * (C) Copyright 1992, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #include "normalis.h" #include #include "allheaders.h" #include "blobs.h" #include "helpers.h" #include "matrix.h" #include "ocrblock.h" #include "unicharset.h" #include "werd.h" // Tolerance in pixels used for baseline and xheight on non-upper/lower scripts. const int kSloppyTolerance = 4; // Final tolerance in pixels added to the computed xheight range. const float kFinalPixelTolerance = 0.125f; DENORM::DENORM() { Init(); } DENORM::DENORM(const DENORM &src) { rotation_ = NULL; *this = src; } DENORM & DENORM::operator=(const DENORM & src) { Clear(); inverse_ = src.inverse_; predecessor_ = src.predecessor_; pix_ = src.pix_; block_ = src.block_; if (src.rotation_ == NULL) rotation_ = NULL; else rotation_ = new FCOORD(*src.rotation_); x_origin_ = src.x_origin_; y_origin_ = src.y_origin_; x_scale_ = src.x_scale_; y_scale_ = src.y_scale_; final_xshift_ = src.final_xshift_; final_yshift_ = src.final_yshift_; return *this; } DENORM::~DENORM() { Clear(); } // Initializes the denorm for a transformation. For details see the large // comment in normalis.h. // Arguments: // block: if not NULL, then this is the first transformation, and // block->re_rotation() needs to be used after the Denorm // transformation to get back to the image coords. // rotation: if not NULL, apply this rotation after translation to the // origin and scaling. (Usually a classify rotation.) // predecessor: if not NULL, then predecessor has been applied to the // input space and needs to be undone to complete the inverse. // The above pointers are not owned by this DENORM and are assumed to live // longer than this denorm, except rotation, which is deep copied on input. // // x_origin: The x origin which will be mapped to final_xshift in the result. // y_origin: The y origin which will be mapped to final_yshift in the result. // Added to result of row->baseline(x) if not NULL. // // x_scale: scale factor for the x-coordinate. // y_scale: scale factor for the y-coordinate. Ignored if segs is given. // Note that these scale factors apply to the same x and y system as the // x-origin and y-origin apply, ie after any block rotation, but before // the rotation argument is applied. // // final_xshift: The x component of the final translation. // final_yshift: The y component of the final translation. void DENORM::SetupNormalization(const BLOCK* block, const FCOORD* rotation, const DENORM* predecessor, float x_origin, float y_origin, float x_scale, float y_scale, float final_xshift, float final_yshift) { Clear(); block_ = block; if (rotation == NULL) rotation_ = NULL; else rotation_ = new FCOORD(*rotation); predecessor_ = predecessor; x_origin_ = x_origin; y_origin_ = y_origin; x_scale_ = x_scale; y_scale_ = y_scale; final_xshift_ = final_xshift; final_yshift_ = final_yshift; } // Helper for SetupNonLinear computes an image of shortest run-lengths from // the x/y edges provided. // Based on "A nonlinear normalization method for handprinted Kanji character // recognition -- line density equalization" by Hiromitsu Yamada et al. // Eg below is an O in a 1-pixel margin-ed bounding box and the corresponding // ______________ input x_coords and y_coords. // | _________ | // | | _ | | 1, 6 // | | | | | | 1, 3, 4, 6 // | | | | | | 1, 3, 4, 6 // | | | | | | 1, 3, 4, 6 // | | |_| | | 1, 3, 4, 6 // | |_________| | 1, 6 // |_____________| // E 1 1 1 1 1 E // m 7 7 2 7 7 m // p 6 p // t 7 t // y y // The output image contains the min of the x and y run-length (distance // between edges) at each coordinate in the image thus: // ______________ // |7 1_1_1_1_1 7| // |1|5 5 1 5 5|1| // |1|2 2|1|2 2|1| // |1|2 2|1|2 2|1| // |1|2 2|1|2 2|1| // |1|2 2|1|2 2|1| // |1|5_5_1_5_5|1| // |7_1_1_1_1_1_7| // Note that the input coords are all integer, so all partial pixels are dealt // with elsewhere. Although it is nice for outlines to be properly connected // and continuous, there is no requirement that they be as such, so they could // have been derived from a flaky source, such as greyscale. // This function works only within the provided box, and it is assumed that the // input x_coords and y_coords have already been translated to have the bottom- // left of box as the origin. Although an output, the minruns should have been // pre-initialized to be the same size as box. Each element will contain the // minimum of x and y run-length as shown above. static void ComputeRunlengthImage( const TBOX& box, const GenericVector >& x_coords, const GenericVector >& y_coords, GENERIC_2D_ARRAY* minruns) { int width = box.width(); int height = box.height(); ASSERT_HOST(minruns->dim1() == width); ASSERT_HOST(minruns->dim2() == height); // Set a 2-d image array to the run lengths at each pixel. for (int ix = 0; ix < width; ++ix) { int y = 0; for (int i = 0; i < y_coords[ix].size(); ++i) { int y_edge = ClipToRange(y_coords[ix][i], 0, height); int gap = y_edge - y; // Every pixel between the last and current edge get set to the gap. while (y < y_edge) { (*minruns)(ix, y) = gap; ++y; } } // Pretend there is a bounding box of edges all around the image. int gap = height - y; while (y < height) { (*minruns)(ix, y) = gap; ++y; } } // Now set the image pixels the the MIN of the x and y runlengths. for (int iy = 0; iy < height; ++iy) { int x = 0; for (int i = 0; i < x_coords[iy].size(); ++i) { int x_edge = ClipToRange(x_coords[iy][i], 0, width); int gap = x_edge - x; while (x < x_edge) { if (gap < (*minruns)(x, iy)) (*minruns)(x, iy) = gap; ++x; } } int gap = width - x; while (x < width) { if (gap < (*minruns)(x, iy)) (*minruns)(x, iy) = gap; ++x; } } } // Converts the run-length image (see above to the edge density profiles used // for scaling, thus: // ______________ // |7 1_1_1_1_1 7| = 5.28 // |1|5 5 1 5 5|1| = 3.8 // |1|2 2|1|2 2|1| = 5 // |1|2 2|1|2 2|1| = 5 // |1|2 2|1|2 2|1| = 5 // |1|2 2|1|2 2|1| = 5 // |1|5_5_1_5_5|1| = 3.8 // |7_1_1_1_1_1_7| = 5.28 // 6 4 4 8 4 4 6 // . . . . . . . // 2 4 4 0 4 4 2 // 8 8 // Each profile is the sum of the reciprocals of the pixels in the image in // the appropriate row or column, and these are then normalized to sum to 1. // On output hx, hy contain an extra element, which will eventually be used // to guarantee that the top/right edge of the box (and anything beyond) always // gets mapped to the maximum target coordinate. static void ComputeEdgeDensityProfiles(const TBOX& box, const GENERIC_2D_ARRAY& minruns, GenericVector* hx, GenericVector* hy) { int width = box.width(); int height = box.height(); hx->init_to_size(width + 1, 0.0); hy->init_to_size(height + 1, 0.0); double total = 0.0; for (int iy = 0; iy < height; ++iy) { for (int ix = 0; ix < width; ++ix) { int run = minruns(ix, iy); if (run == 0) run = 1; float density = 1.0f / run; (*hx)[ix] += density; (*hy)[iy] += density; } total += (*hy)[iy]; } // Normalize each profile to sum to 1. if (total > 0.0) { for (int ix = 0; ix < width; ++ix) { (*hx)[ix] /= total; } for (int iy = 0; iy < height; ++iy) { (*hy)[iy] /= total; } } // There is an extra element in each array, so initialize to 1. (*hx)[width] = 1.0f; (*hy)[height] = 1.0f; } // Sets up the DENORM to execute a non-linear transformation based on // preserving an even distribution of stroke edges. The transformation // operates only within the given box. // x_coords is a collection of the x-coords of vertical edges for each // y-coord starting at box.bottom(). // y_coords is a collection of the y-coords of horizontal edges for each // x-coord starting at box.left(). // Eg x_coords[0] is a collection of the x-coords of edges at y=bottom. // Eg x_coords[1] is a collection of the x-coords of edges at y=bottom + 1. // The second-level vectors must all be sorted in ascending order. // See comments on the helper functions above for more details. void DENORM::SetupNonLinear( const DENORM* predecessor, const TBOX& box, float target_width, float target_height, float final_xshift, float final_yshift, const GenericVector >& x_coords, const GenericVector >& y_coords) { Clear(); predecessor_ = predecessor; // x_map_ and y_map_ store a mapping from input x and y coordinate to output // x and y coordinate, based on scaling to the supplied target_width and // target_height. x_map_ = new GenericVector; y_map_ = new GenericVector; // Set a 2-d image array to the run lengths at each pixel. int width = box.width(); int height = box.height(); GENERIC_2D_ARRAY minruns(width, height, 0); ComputeRunlengthImage(box, x_coords, y_coords, &minruns); // Edge density is the sum of the inverses of the run lengths. Compute // edge density projection profiles. ComputeEdgeDensityProfiles(box, minruns, x_map_, y_map_); // Convert the edge density profiles to the coordinates by multiplying by // the desired size and accumulating. (*x_map_)[width] = target_width; for (int x = width - 1; x >= 0; --x) { (*x_map_)[x] = (*x_map_)[x + 1] - (*x_map_)[x] * target_width; } (*y_map_)[height] = target_height; for (int y = height - 1; y >= 0; --y) { (*y_map_)[y] = (*y_map_)[y + 1] - (*y_map_)[y] * target_height; } x_origin_ = box.left(); y_origin_ = box.bottom(); final_xshift_ = final_xshift; final_yshift_ = final_yshift; } // Transforms the given coords one step forward to normalized space, without // using any block rotation or predecessor. void DENORM::LocalNormTransform(const TPOINT& pt, TPOINT* transformed) const { FCOORD src_pt(pt.x, pt.y); FCOORD float_result; LocalNormTransform(src_pt, &float_result); transformed->x = IntCastRounded(float_result.x()); transformed->y = IntCastRounded(float_result.y()); } void DENORM::LocalNormTransform(const FCOORD& pt, FCOORD* transformed) const { FCOORD translated(pt.x() - x_origin_, pt.y() - y_origin_); if (x_map_ != NULL && y_map_ != NULL) { int x = ClipToRange(IntCastRounded(translated.x()), 0, x_map_->size()-1); translated.set_x((*x_map_)[x]); int y = ClipToRange(IntCastRounded(translated.y()), 0, y_map_->size()-1); translated.set_y((*y_map_)[y]); } else { translated.set_x(translated.x() * x_scale_); translated.set_y(translated.y() * y_scale_); if (rotation_ != NULL) translated.rotate(*rotation_); } transformed->set_x(translated.x() + final_xshift_); transformed->set_y(translated.y() + final_yshift_); } // Transforms the given coords forward to normalized space using the // full transformation sequence defined by the block rotation, the // predecessors, deepest first, and finally this. If first_norm is not NULL, // then the first and deepest transformation used is first_norm, ending // with this, and the block rotation will not be applied. void DENORM::NormTransform(const DENORM* first_norm, const TPOINT& pt, TPOINT* transformed) const { FCOORD src_pt(pt.x, pt.y); FCOORD float_result; NormTransform(first_norm, src_pt, &float_result); transformed->x = IntCastRounded(float_result.x()); transformed->y = IntCastRounded(float_result.y()); } void DENORM::NormTransform(const DENORM* first_norm, const FCOORD& pt, FCOORD* transformed) const { FCOORD src_pt(pt); if (first_norm != this) { if (predecessor_ != NULL) { predecessor_->NormTransform(first_norm, pt, &src_pt); } else if (block_ != NULL) { FCOORD fwd_rotation(block_->re_rotation().x(), -block_->re_rotation().y()); src_pt.rotate(fwd_rotation); } } LocalNormTransform(src_pt, transformed); } // Transforms the given coords one step back to source space, without // using to any block rotation or predecessor. void DENORM::LocalDenormTransform(const TPOINT& pt, TPOINT* original) const { FCOORD src_pt(pt.x, pt.y); FCOORD float_result; LocalDenormTransform(src_pt, &float_result); original->x = IntCastRounded(float_result.x()); original->y = IntCastRounded(float_result.y()); } void DENORM::LocalDenormTransform(const FCOORD& pt, FCOORD* original) const { FCOORD rotated(pt.x() - final_xshift_, pt.y() - final_yshift_); if (x_map_ != NULL && y_map_ != NULL) { int x = x_map_->binary_search(rotated.x()); original->set_x(x + x_origin_); int y = y_map_->binary_search(rotated.y()); original->set_y(y + y_origin_); } else { if (rotation_ != NULL) { FCOORD inverse_rotation(rotation_->x(), -rotation_->y()); rotated.rotate(inverse_rotation); } original->set_x(rotated.x() / x_scale_ + x_origin_); float y_scale = y_scale_; original->set_y(rotated.y() / y_scale + y_origin_); } } // Transforms the given coords all the way back to source image space using // the full transformation sequence defined by this and its predecessors // recursively, shallowest first, and finally any block re_rotation. // If last_denorm is not NULL, then the last transformation used will // be last_denorm, and the block re_rotation will never be executed. void DENORM::DenormTransform(const DENORM* last_denorm, const TPOINT& pt, TPOINT* original) const { FCOORD src_pt(pt.x, pt.y); FCOORD float_result; DenormTransform(last_denorm, src_pt, &float_result); original->x = IntCastRounded(float_result.x()); original->y = IntCastRounded(float_result.y()); } void DENORM::DenormTransform(const DENORM* last_denorm, const FCOORD& pt, FCOORD* original) const { LocalDenormTransform(pt, original); if (last_denorm != this) { if (predecessor_ != NULL) { predecessor_->DenormTransform(last_denorm, *original, original); } else if (block_ != NULL) { original->rotate(block_->re_rotation()); } } } // Normalize a blob using blob transformations. Less accurate, but // more accurately copies the old way. void DENORM::LocalNormBlob(TBLOB* blob) const { TBOX blob_box = blob->bounding_box(); ICOORD translation(-IntCastRounded(x_origin_), -IntCastRounded(y_origin_)); blob->Move(translation); if (y_scale_ != 1.0f) blob->Scale(y_scale_); if (rotation_ != NULL) blob->Rotate(*rotation_); translation.set_x(IntCastRounded(final_xshift_)); translation.set_y(IntCastRounded(final_yshift_)); blob->Move(translation); } // Fills in the x-height range accepted by the given unichar_id, given its // bounding box in the usual baseline-normalized coordinates, with some // initial crude x-height estimate (such as word size) and this denoting the // transformation that was used. void DENORM::XHeightRange(int unichar_id, const UNICHARSET& unicharset, const TBOX& bbox, float* min_xht, float* max_xht, float* yshift) const { // Default return -- accept anything. *yshift = 0.0f; *min_xht = 0.0f; *max_xht = MAX_FLOAT32; if (!unicharset.top_bottom_useful()) return; // Clip the top and bottom to the limit of normalized feature space. int top = ClipToRange(bbox.top(), 0, kBlnCellHeight - 1); int bottom = ClipToRange(bbox.bottom(), 0, kBlnCellHeight - 1); // A tolerance of yscale corresponds to 1 pixel in the image. double tolerance = y_scale(); // If the script doesn't have upper and lower-case characters, widen the // tolerance to allow sloppy baseline/x-height estimates. if (!unicharset.script_has_upper_lower()) tolerance = y_scale() * kSloppyTolerance; int min_bottom, max_bottom, min_top, max_top; unicharset.get_top_bottom(unichar_id, &min_bottom, &max_bottom, &min_top, &max_top); // Calculate the scale factor we'll use to get to image y-pixels double midx = (bbox.left() + bbox.right()) / 2.0; double ydiff = (bbox.top() - bbox.bottom()) + 2.0; FCOORD mid_bot(midx, bbox.bottom()), tmid_bot; FCOORD mid_high(midx, bbox.bottom() + ydiff), tmid_high; DenormTransform(NULL, mid_bot, &tmid_bot); DenormTransform(NULL, mid_high, &tmid_high); // bln_y_measure * yscale = image_y_measure double yscale = tmid_high.pt_to_pt_dist(tmid_bot) / ydiff; // Calculate y-shift int bln_yshift = 0, bottom_shift = 0, top_shift = 0; if (bottom < min_bottom - tolerance) { bottom_shift = bottom - min_bottom; } else if (bottom > max_bottom + tolerance) { bottom_shift = bottom - max_bottom; } if (top < min_top - tolerance) { top_shift = top - min_top; } else if (top > max_top + tolerance) { top_shift = top - max_top; } if ((top_shift >= 0 && bottom_shift > 0) || (top_shift < 0 && bottom_shift < 0)) { bln_yshift = (top_shift + bottom_shift) / 2; } *yshift = bln_yshift * yscale; // To help very high cap/xheight ratio fonts accept the correct x-height, // and to allow the large caps in small caps to accept the xheight of the // small caps, add kBlnBaselineOffset to chars with a maximum max, and have // a top already at a significantly high position. if (max_top == kBlnCellHeight - 1 && top > kBlnCellHeight - kBlnBaselineOffset / 2) max_top += kBlnBaselineOffset; top -= bln_yshift; int height = top - kBlnBaselineOffset; double min_height = min_top - kBlnBaselineOffset - tolerance; double max_height = max_top - kBlnBaselineOffset + tolerance; // We shouldn't try calculations if the characters are very short (for example // for punctuation). if (min_height > kBlnXHeight / 8 && height > 0) { float result = height * kBlnXHeight * yscale / min_height; *max_xht = result + kFinalPixelTolerance; result = height * kBlnXHeight * yscale / max_height; *min_xht = result - kFinalPixelTolerance; } } // Prints the content of the DENORM for debug purposes. void DENORM::Print() const { if (pix_ != NULL) { tprintf("Pix dimensions %d x %d x %d\n", pixGetWidth(pix_), pixGetHeight(pix_), pixGetDepth(pix_)); } if (inverse_) tprintf("Inverse\n"); if (block_ && block_->re_rotation().x() != 1.0f) { tprintf("Block rotation %g, %g\n", block_->re_rotation().x(), block_->re_rotation().y()); } tprintf("Input Origin = (%g, %g)\n", x_origin_, y_origin_); if (x_map_ != NULL && y_map_ != NULL) { tprintf("x map:\n"); for (int x = 0; x < x_map_->size(); ++x) { tprintf("%g ", (*x_map_)[x]); } tprintf("\ny map:\n"); for (int y = 0; y < y_map_->size(); ++y) { tprintf("%g ", (*y_map_)[y]); } tprintf("\n"); } else { tprintf("Scale = (%g, %g)\n", x_scale_, y_scale_); if (rotation_ != NULL) tprintf("Rotation = (%g, %g)\n", rotation_->x(), rotation_->y()); } tprintf("Final Origin = (%g, %g)\n", final_xshift_, final_xshift_); if (predecessor_ != NULL) { tprintf("Predecessor:\n"); predecessor_->Print(); } } // ============== Private Code ====================== // Free allocated memory and clear pointers. void DENORM::Clear() { if (x_map_ != NULL) { delete x_map_; x_map_ = NULL; } if (y_map_ != NULL) { delete y_map_; y_map_ = NULL; } if (rotation_ != NULL) { delete rotation_; rotation_ = NULL; } } // Setup default values. void DENORM::Init() { inverse_ = false; pix_ = NULL; block_ = NULL; rotation_ = NULL; predecessor_ = NULL; x_map_ = NULL; y_map_ = NULL; x_origin_ = 0.0f; y_origin_ = 0.0f; x_scale_ = 1.0f; y_scale_ = 1.0f; final_xshift_ = 0.0f; final_yshift_ = static_cast(kBlnBaselineOffset); }